# **PHYSICAL LAYER SECURITY IN WIRELESS NETWORKS WITH ACTIVE EAVESDROPPERS** Arsenia Chorti<sup>1,2</sup>



### **1. INTRODUCTION**

Perfect secrecy is achievable if there exists an SNR advantage at the legitimate user with respect to an eavesdropper.

> $C_{S} = \max_{p(u,x)} \left( I(U;Y) - I(U;Z) \right)$ U - X - YZ



#### 6. HIGH SNR REGIME **5. GAME THEORETIC ANALYSIS** [CHORTI, PERLAZA, HAN, POOR, GLOBECOM'12] Average SC in the high SNR regime The BS can potentially transmit *only* to the user with the highest *reported* SNR $\Box$ The active eavesdropper *always reports* a forged SNR value $\tilde{\gamma}_{e} = \gamma_{e} + \varepsilon$ The BS and the eavesdropper have a common *utility function* $\frac{1+\gamma_a}{1+\gamma_e} \mathbf{1}_{\{\boldsymbol{y}\}}$ 2.6 ້ 2.4 ⊦ $u(p, \varepsilon)=0$ $u(p, \varepsilon) < 0$ 2.2 The BS transmits to the The BS transmits to a eavesdropper legitimate user □Potential information leakage □Network resources are 1.8 to the eavesdropper wasted $\Box \text{ Average Secrecy Capacity } \langle C_s(\widehat{\varepsilon}) \rangle = \int_0^\infty \int_{g_a}^\infty \int_{p_{\text{max}}}^\infty \log \frac{1 + g_a p_{\text{max}}}{1 + g_e p_{\text{max}}} dF(g_e) dF_a(g_a)$ 10

$$u(p,\varepsilon) = \log \frac{1 + g_a p}{1 + g_e p} \mathbf{1}_{\{\gamma_a > \gamma_e + \varepsilon\}} = \log \frac{1}{2}$$

 $u(p, \varepsilon) > 0$ The BS transmits to a legitimate user □Non zero secrecy capacity

The effect of an active eavesdropper was systematically evaluated through the use of game theoretic tools under a full CSI assumption. Our analysis suggests that in order to minimize the loss incurred by such attacks, side information is required. Interestingly, we found that in the high SNR regime, the network is insensitive to the passiveness or activeness of the attack. Finally, assuming a stochastic modeling of the behavior of the active eavesdropper is available, we have derived bounds for the instantaneous secrecy capacity that can be used to determine power allocation strategies.

<sup>1</sup>Department of Electrical Engineering, Princeton University <sup>2</sup>Institute of Computer Science, Foundation for Research and Technology-Hellas email: achorti@princeton.edu

2. QUESTION

Can we incorporate perfect secrecy (quantitatively expressed through the secrecy capacity) in the Quality of Service (QoS) metrics of the network?

Establish minimum secrecy capacity requirements for a given application.

# **3. NETWORK WITH ACTIVE EAVESDROPPERS**

### **System Model:**

Centralized network with one management unit (base station)

- □ *K* registered users, amongst which *E* active eavesdroppers Users report channel gains
- $g_k = |h_k|^2$  with pdf  $f(g_k) = e^{-g_k}$ , and cdf  $F(g_k) = 1 e^{-g_k}$ , k = 1, ..., K
- $\Box$  BS transmits codewords  $x_k$  from a Gaussian codebook, with power pto the user with the highest SNR  $\gamma_k$ , where  $\gamma_k = g_k p$
- Useful indices: *Best user, second best user, best eavesdropper*  $b = \arg \max_{k \in K \setminus \{a\}} \gamma_k$  $a = \arg \max_{k \in \mathcal{K}} \gamma_k$

 $\Box$  Secrecy capacity:  $C_{s}$ 

$$= \left(\log\frac{1+\gamma_a}{1+\gamma_e}\right)^+$$

## **8. CONCLUSIONS**





 $e = \arg \max_{k \in \mathcal{S}} \gamma_k$ 

# **4. ACTIVE EAVESDROPPERS**

Active eavesdropper: Appears as a registered user who reports forged Channel State Information (CSI) to the BS

#### Heuristic eavesdropper strategy 1. If it has the **highest SNR**, **i.e.** *e*=*a*

- **Reports a lower SNR**
- eavesdropper can decode the secret message  $x_h$
- 2. If it does **not** have the **highest SNR**
- □ It might **report a higher SNR** wasted

THE EAVESDROPPER CAN ALWAYS WIN!



# 7. SECRECY CAPACITY BOUNDS

We assume that the reported channel gain  $\tilde{g}_e$  deviates from the true value  $g_e$  by a quantity  $\theta$  with pdf  $p_{\Theta}(\theta)$ □ The BS cannot distinguish between the legitimate user and the active eavesdropper Bounds on the secrecy capacity

 $\langle C_s \rangle_{\min(or\max)}$  $= \min(or \max$ 

$$\max_{P_2(\theta)} \int_{g_1 - \tilde{g}_2 - \theta}^{\infty} \log \frac{1 + P_2 g_1}{1 + P_2 (\tilde{g}_2 - \theta)} p_{\Theta}(\theta) \mathrm{d}\theta, \}$$





□ If the BS transmits to the second best user with index *b*, the

□ If the BS transmits to the eavesdropper, network resources are

ax) 
$$\left\{ \max_{P_1(\theta)} \int_{\widetilde{g}_1 - \theta - g_2}^{\infty} \log \frac{1 + P_1(\widetilde{g}_1 - \theta)}{1 + P_1 g_2} p_{\Theta}(\theta) d\theta, \right.$$

□ If the minimum secrecy capacity exceeds a threshold value, the BS transmits, otherwise no transmission takes place

#### ACKNOWLEDGEMENTS

This work was funded in part by the IOF "APLOE" (PIOF-GA-2010-274723) grant within the 7th Framework Program of the European Community and in part by the U.S. National Science Foundation Grant CNS-09-05398.